118 research outputs found

    Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia

    Get PDF
    High spatio-temporal resolution optical remote sensing data provide unprecedented opportunities to monitor and detect forest disturbance and loss. To demonstrate this potential, a 12-year time series (2000 to 2011) with an 8-day interval of a 30m spatial resolution data was generated by the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) with Landsat sensor observations and Moderate Resolution Imaging Spectroradiometer (MODIS) data as input. The time series showed a close relationship over homogeneous forested and grassland sites, with r values of 0.99 between Landsat and the closest STARFM simulated data; and values of 0.84 and 0.94 between MODIS and STARFM. The time and magnitude of clearing and re-clearing events were estimated through a phenological breakpoint analysis, with 96.2% of the estimated breakpoints of the clearing event and 83.6% of the re-clearing event being within 40days of the true clearing. The study highlights the benefits of using these moderate resolution data for quantifying and understanding land cover change in open forest environments

    A Structural Classification of Australian Vegetation Using ICESat/GLAS, ALOS PALSAR and Landsat Sensor Data

    Get PDF
    Australia has historically used structural descriptors of height and cover to characterize, differentiate, and map the distribution of woody vegetation across the continent but no national satellite-based structural classification has been available. In this study, we present a new 30-m spatial resolution reference map of Australian forest and woodland structure (height and cover), with this generated by integrating Landsat Thematic Mapper (TM) and Enhanced TM, Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) and Ice, Cloud, and land Elevation (ICESat),and Geoscience Laser Altimeter System (GLAS) data. ALOS PALSAR and Landsat-derived Foliage Projective Cover (FPC) were used to segment and classify the Australian landscape. Then, from intersecting ICESat waveform data, vertical foliage profiles and height metrics (e.g., 95% percentile height, mean height and the height to maximum vegetation density) were extracted for each of the classes generated. Within each class, and for selected areas, the variability in ICESat profiles was found to be similar with differences between segments of the same class attributed largely to clearance or disturbance events. ICESat metrics and profiles were then assigned to all remaining segments across Australia with the same class allocation. Validation against airborne LiDAR for a range of forest structural types indicated a high degree of correspondence in estimated height measures. On this basis, a map of vegetation height was generated at a national level and was combined with estimates of cover to produce a revised structural classification based on the scheme of the Australian National Vegetation Information System (NVIS). The benefits of integrating the three datasets for segmenting and classifying the landscape and retrieving biophysical attributes was highlighted with this leading the way for future mapping using ALOS-2 PALSAR-2, Landsat/Sentinel-2, Global Ecosystem Dynamics Investigation (GEDI), and ICESat-2 LiDAR data. The ability to map across large areas provides considerable benefits for quantifying carbon dynamics and informing on biodiversity metrics

    GEDI and TanDEM-X Fusion for 3D Forest Structure Parameter Retrieval

    Get PDF
    GEDI: Global Ecosystem Dynamics Investigation. Selected in late 2014 for $94 M (Class C mission). Multi-beam waveform lidar instrument. Deployed on International Space Station. Launch on SpaceX-17: Nov. 2018. Nominal 2 year mission length

    Integration of LiDAR and QuickBird imagery for mapping riparian zones in Australian tropical savannas.

    Get PDF
    Riparian zones are exposed to increasing pressures because of disturbance from agricultural and urban expansion and overgrazing. Accurate and cost-effective mapping of riparian environments is important for managing their functions associated with water quality, biodiversity, and wildlife habitats. The objective of this research was to integrate Light Detection and Ranging (LiDAR) and high spatial resolution QuickBird-2 imagery to estimate riparian zone attributes. A digital terrain model (DTM), a tree canopy model (TCM) and a plant projective cover (PPC) map were first obtained from the LiDAR data. The LiDAR-derived products and the QuickBird bands were then combined in an object-oriented approach to map riparian vegetation, streambed, vegetation overhang, bare ground, woodlands and rangelands. These products were also used to assess the riparian zone width. The overall result was a combined method, taking advantage of both optical and airborne laser systems, for mapping riparian forest structural parameters and riparian zone dimensions. This work shows the accuracy able to be obtained by integrating LiDAR data with high spatial resolution optical imagery to provide more detailed information for riparian zone management

    Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles

    Full text link
    NASA's Global Ecosystem Dynamics Investigation (GEDI) is a key climate mission whose goal is to advance our understanding of the role of forests in the global carbon cycle. While GEDI is the first space-based LIDAR explicitly optimized to measure vertical forest structure predictive of aboveground biomass, the accurate interpretation of this vast amount of waveform data across the broad range of observational and environmental conditions is challenging. Here, we present a novel supervised machine learning approach to interpret GEDI waveforms and regress canopy top height globally. We propose a probabilistic deep learning approach based on an ensemble of deep convolutional neural networks (CNN) to avoid the explicit modelling of unknown effects, such as atmospheric noise. The model learns to extract robust features that generalize to unseen geographical regions and, in addition, yields reliable estimates of predictive uncertainty. Ultimately, the global canopy top height estimates produced by our model have an expected RMSE of 2.7 m with low bias

    Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index

    Get PDF
    In situ leaf area index (LAI) measurements are essential to validate widely-used large-area or global LAI products derived, indirectly, from satellite observations. Here, we compare three common and emerging ground-based sensors for rapid LAI characterisation of large areas, namely digital hemispherical photography (DHP), two versions of a widely-used commercial LAI sensor (LiCOR LAI-2000 and 2200), and terrestrial laser scanning (TLS). The comparison is conducted during leaf-on and leaf-off conditions at an unprecedented sample size in a deciduous woodland canopy. The deviation between estimates of these three ground-based instruments yields differences greater than the 5% threshold goal set by the World Meteorological Organization. The variance at sample level is reduced when aggregated to plot scale (1 ha) or site scale (6 ha). TLS shows the lowest relative standard deviation in both leaf-on (11.78%) and leaf-off (13.02%) conditions. Whereas the relative standard deviation of effective plant area index (ePAI) derived from DHP relates closely to us in leaf-on conditions, it is as large as 28.14-29.74% for effective wood area index (eWAI) values in leaf-off conditions depending on the thresholding technique that was used. ePAI values of TLS and LAI-2x00 agree best in leaf-on conditions with a concordance correlation coefficient (CCC) of 0.796. In leaf-off conditions, eWAI values derived from DHP with Ridler and Calvard thresholding agrees best with TLS. Sample size analysis using Monte Carlo bootstrapping shows that TLS requires the fewest samples to achieve a precision better than 5% for the mean +/- standard deviation. We therefore support earlier studies that suggest that TLS measurements are preferential to measurements from instruments that are dependent on specific illumination conditions. A key issue with validation of indirect estimates of LAI is that the true values are not known. Since we cannot know the true values of LAI, we cannot quantify the accuracy of the measurements. Our radiative transfer simulations show that ePAI estimates are, on average, 27% higher than eLAI estimates. Linear regression indicated a linear relationship between eLAI and ePAI-eWAI (R-2 = 0.87), with an intercept of 0.552 and suggests that caution is required when using LAI estimates

    A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA) Utilizing Raster Attribute Tables

    Get PDF
    A modular system for performing Geographic Object-Based Image Analysis (GEOBIA), using entirely open source (General Public License compatible) software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT). The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib), the Raster I/O Simplification (RIOS) Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1) classification of mangrove extent and change in French Guiana; (2) a generic scheme for the classification of the UN-FAO land cover classification system (LCCS) and their subsequent translation to habitat categories; and (3) a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets

    An Approach to Mapping Forest Growth Stages in Queensland, Australia through Integration of ALOS PALSAR and Landsat Sensor Data

    Get PDF
    Whilst extensive clearance of forests in the eastern Australian Brigalow Belt Bioregion (BBB) has occurred since European settlement, appropriate management of those that are regenerating can facilitate restoration of biomass (carbon) and biodiversity to levels typical of relatively undisturbed or remnant formations. However, maps of forests are different stages of regeneration are needed to facilitate restoration planning, including prevention of further re-clearing. Focusing on the Tara Downs subregion of the BBB and on forests with brigalow (Acacia harpophylla) as a component, this research establishes a method for differentiating and mapping early, intermediate and remnant growth stages from Japan Aerospace Exploration Agency (JAXA) Advanced Land Observing Satellite (ALOS) Phased-Array L-band Synthetic Aperture Radar (PALSAR) Fine Beam Dual (FBD) L-band HH- and HV-polarisation backscatter and Landsat-derived Foliage Projective Cover (FPC). Using inventory data collected from 74 plots, located in the Tara Downs subregion, forests were assigned to one of three regrowth stages based on their height and cover relative to that of undisturbed stands. The image data were then segmented into objects with each assigned to a growth stage by comparing the distributions of L-band HV and HH polarisation backscatter and FPC to that of reference distributions using a z-test. Comparison with independent assessments of growth stage, based on time-series analysis of aerial photography and SPOT images, established an overall accuracy of > 70%, with this increasing to 90% when intermediate regrowth was excluded and only early-stage regrowth and remnant classes were considered. The proposed method can be adapted to respond to amendments to user-definitions of growth stage and, as regional mosaics of ALOS PALSAR and Landsat FPC are available for Queensland, has application across the state
    • …
    corecore